Thermal therapy with magnetic nanoparticles for cell destruction.
نویسندگان
چکیده
In this article we suggest a new concept for cell destruction based upon manipulating magnetic nanoparticles (MNPs) by applying external, low frequency alternating magnetic field (AMF) that oscillates the particles, together with focused laser illumination. Assessment of temperature profiles in a head and neck squamous cell carcinoma sample showed that cells with MNPs, treated with AMF (3 Hz, 300 mW) and laser irradiation (30 mW), reached 42°C after 4.5 min, as opposed to cells treated with laser but without AMF. Moreover, a theoretical model was developed to assess the overall theoretical temperature rise, which was shown to be 50% lower than the experimental temperature. Furthermore, we found that the combination of laser irradiation and AMF decreased the number of live cells by ~50%. Thus, the concentrated assembly of laser heating with AMF-induced MNP oscillations leads to more rapid and efficient cell death. These results suggest that the manipulated MNP technique can serve as a superior agent for PTT, with improved cell death capabilities.
منابع مشابه
Study on Fe3O4 Magnetic Nanoparticles Size Effect on Temperature Distribution of Tumor in Hyperthermia: A Finite Element Method
In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...
متن کاملMethotrexate-coupled nanoparticles and magnetic nanochemothermia for the relapse-free treatment of T24 bladder tumors
Heat-based approaches have been considered as promising tools due to their ability to directly eradicate tumor cells and/or increase the sensitivity of tumors to radiation- or chemotherapy. In particular, the heating of magnetic nanoparticles (MNPs) via an alternating magnetic field can provide a handy alternative for a localized tumor treatment. To amplify the efficacy of magnetically induced ...
متن کاملAn investigation into the photothermal effects of multi- functional gold coated Fe3O4 Nanoparticles in the presence of external magnetic field and NIR laser irradiation on model of melanoma cancer cell line B16F10 in C57BL/6 mice
Introduction: Photothermal therapy using gold nanoshells is one of cancer therapy methods. Gold nanoshells generally consist of a silica core and a thin gold shell. Fe3O4@Au core-shell can be used for magnetic targeted therapy. The objective of this study was investigation of the photothermal effects of magnetically targeted Fe3O4@Au NPs and NIR laser irradiation on model of me...
متن کاملA Simple Thermal Decomposition Method for Synthesis of Co0.6Zn0.4Fe2O4 Magnetic Nanoparticles
Magnetic nanoparticles attracted a great deal of attention in the medical applications due to their unique properties. The most exceptional property of magnetic particles is their response to a magnetic force, and this property has been utilized in applications such as drug targeting, bioseparation, contrast agents in magnetic resonance imaging (MRI) and heating mediators for cancer therapy. In...
متن کاملSynergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line
Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomedical optics express
دوره 7 11 شماره
صفحات -
تاریخ انتشار 2016